PII: S0040-4039(97)01413-5 ## Cyclisation of Aminyl Radicals Derived from Amino Acids W. Russell Bowman, *a Michael J. Broadhurst, b Daniel R. Coghlana and Kirk A. Lewisa - a. Department of Chemistry, Loughborough University, Loughborough, Leics. LE11 3TU, U.K. - b. Roche Discovery Welwyn, Broadwater Road (no 40), Welwyn Garden City, Herts. AL7 3AY, U.K. **Abstract:** α -Amino acid aminyl radicals have been generated from sulfenamide precursors using Bu₃SnH. The aminyl radicals undergo 5-exo-trig cyclisation reactions onto suitably placed *N*-alkenyl or α -alkenyl chains on the amino acids with reasonable diastereoselectivity. The α -ester of the amino acid imparts electrophilic behaviour to the aminyl radicals and facilitates cyclisation onto alkenes. © 1997 Elsevier Science Ltd. Aminyl radicals have been intensively studied in recent years $^{1-9}$ and have been fully reviewed. We have developed the use of sulfenamides $^{2-4}$ and imines 5 as precursors for aminyl radicals and applied the protocols to the synthesis of a range of bicyclic nitrogen heterocycles, e.g. pyrrolizidines and indolizidines. The development of radical reactions which can be carried out with stereochemical control, especially those involving radical cyclisation, has been at the forefront of synthetic organic chemistry. 10 The application of radical cyclisation to heterocyclic synthesis is receiving increasing attention. 11 α -Chiral radicals have been used with success to impart stereoselectivity in both intramolecular and bimolecular reactions. 10 To this end, we have further developed the sulfenamide methodology 2 using α -chiral aminyl radicals derived from α -amino acids as precursors. The synthesis of novel amino acids is of central interest 12 but with only limited applications from radical chemistry. 13 The radical chemistry of amino acids has been recently reviewed. 14 In this paper we describe the first examples of radical cyclisations of aminyl radicals derived from amino acids. Cyclisation of α -amino acid aminyl radicals can be envisaged in three directions using suitably placed alkenyl substituents, *i.e.* on the α -amino group, on the side chain or on the α -carboxyl group. The first two options are reported herein and the study of the third is underway. Neutral aminyl radicals are nucleophilic with the consequence that the rate of 5-exo cyclisation is the same as the reverse ring-opening reaction. 1,2,6 In order to facilitate useful cyclisation in synthetic reactions aminyl radicals need to be made electrophilic, e.g. by protonation to yield aminium radicals 1,7,8 (the rate of cyclisation of N-butyl-4-pentenamine increases from $1.5 \times 10^4 \text{ s}^{-1}$ to $4 \times 10^7 \text{ s}^{-1}$ at 25 °C) or complexation with Lewis acids (e.g. MgBr₂ increases the rate of cyclisation 6.2 fold). Similarly, amidyl radicals are also electrophilic and cyclise faster than neutral aminyl radicals. 1,4,9 In our studies reported in this paper we have shown that the α -ester group imparts moderate electrophilicity to the aminyl radicals generated from α -aminoesters and facilitates cyclisation. The electron withdrawing effects can be predicted because α -amino esters are ca. 10^3 times less basic than the corresponding amines. The sulfenamide precursors 2a-f required for cyclisation of amino acid aminyl radicals onto N-alkenyl chains were synthesised by reaction between the amino esters 1a-f and benzenesulfenyl chloride² (Scheme 1). The benzenesulfenyl chloride was preformed just prior to addition by reaction between PhSSPh and sulfuryl chloride. The reactions were rapid at 0 °C and the products were purified using flash silica chromatography. The sulfenamides were unstable on neutral alumina in contrast to sulfenamides of ordinary amines which were Scheme 1. Synthesis of sulfenamide precursors for N-alkenyl α-amino acid aminyl radicals stable on alumina but unstable on silica. ² Synthesis of the precursors using N-(benzenesulfenyl)phthalimide² gave cleaner crude products but lower yields. The sulfenamide precursors 2a-f were cyclised using normal Bu₃SnH conditions¹⁵ to yield mixtures of two diastereomers 3a-f and uncyclised α -amino esters 1a-f (Scheme 2). A blank reaction without Bu₃SnH showed that the sulfenamides were stable in refluxing toluene. The yields and diastereomeric excesses (de) of the cyclised products were calculated using ¹H NMR spectroscopy with an internal standard and the values shown are an average of three experiments. The diastereomers could be separated with difficulty and the major diastereomer in each case was fully characterised and the minor isomer was determined in a mixture. Analysis of crude products using GC/MS indicated traces (<1%) of 6-endo cyclisation except for sulfenamide 1d which gave ca. 5% of 6-endo cyclised material. This is possibly due to larger steric hindrance for 5-exo cyclisation than for the other intermediate aminyl radicals 4a-c. Scheme 2. Cyclisation of N-alkenyl sulfenamide precursors via α -amino acid aminyl radicals The relative yields of 5-exo cyclised products 3 to uncyclised α -amino esters 1 via intermediate aminyl radicals 4 are much higher than for the cyclisation of ordinary N-alkyl-4-pentenamines. $^{1-4,6-9}$ The obvious explanation is that the α -ester imparts electrophilicity to the intermediate aminyl radicals 4 thereby facilitating faster cyclisation. However, the result could also be explained by a decrease in the rate of the reverse ring-opening compared to that for N-alkyl-4-pentenamines. The cyclisations show interesting diastereoselectivity of cyclisation for α -chiral aminyl radicals but could not be increased above ca. 50%. For the methyl esters 1a-d the de increased for the α -substituent ($R^1 = Me < Bn$, iso-Pr) as expected but dropped when the bulky tert-butyl group of tert-leucine was present. The use of tert-butyl esters improved the te for alanine (te versus te) but made no difference for valine (te versus te). We considered that if the rate of hydrogen abstraction from the radical generating reagent by the intermediate aminyl radical could be lowered then a higher yield of cyclisation and/or te could be predicted. However, unexpectedly the opposite was observed when the reaction with te was repeated using tris-(trimethylsilyl)-silane [(te)3SiH] in place of te Bu3SnH. The yield of the cyclised diastereomers te was 21% and 7% (te = 50%) and uncyclised te (te). (te)3SiH was less useful than Bu3SnH and was not further investigated. The second part of the study of the cyclisation of α -amino acid aminyl radicals onto a suitably placed alkenyl substituent on the side chain was examined. For initial convenience the racemic α -alkenyl amino acids **5a-d** were used in our study and were synthesised by alkylation of the benzal imine of methyl glycine. Synthesis of the *D*- and *L*-enantiomers is underway using known methodology. The sulfenamide precursors **6a-d** were synthesised by the same procedure as for *N*-alkenyl amino acids **1** using reaction between the amino acids **5a-d** and benzenesulfenyl chloride (Scheme 3). The yields were not optimised. The lower yield of the primary sulfenamide **6a** was due to poor stability on the silica column which resulted in a number of byproducts, of which the major one was the corresponding *N*-(benzenesulfenyl)imine. Scheme 3. Synthesis of sulfenamide precursors for α -alkenyl α -amino acid aminyl radicals The cyclisations were carried using the same conditions with Bu₃SnH except that cyclohexane was used in place of toluene. ¹⁵ AMBN, trade name for 2-[(E)-2-(1-cyano-1-methylpropyl)-1-diazenyl]-2-methylbutano-nitrile)], was used in place of AIBN because of its greater solubility in cyclohexane compared with AIBN. The yields of products were measured using ¹H NMR spectroscopy with an internal standard prior to separation and characterisation. The cyclisation of sulfenamide 6a was most successful and gave mainly cyclisation to the proline derivative 8a with a de of 57%. The intermediate aminyl radical 7b resulting from the N-benzyl sulfenamide 6b gave poorer cyclisation than radical 7a and is similar to the aminyl radicals 4a-f resulting from the N-alkenyl sulfenamide. The poorer yields of cyclisation resulting from these dialkyl aminyls 7b and 4a-f, relative to the primary aminyl radical 7a is partly explained by their lower electrophilicity. Scheme 4. Cyclisation of α -alkenyl sulfenamide precursors via α -amino acid aminyl radicals The attempted 6-exo cyclisation of the intermediate aminyl radical 7c from sulfenamide 6c gave a 1:1 mixture of the alkenes 5c and 9c clearly indicating faster 1,5-hydrogen abstraction than 6-exo cyclisation. The analogous aminyl radicals lacking the α -ester undergo 6-exo cyclisation and not 1,5-hydrogen abstraction indicating that the electrophilicity imparted by the α -ester causes the H-abstraction for the intermediate aminyl radical $7c.^2$ Cyclisation of sulfenamide 6d was also not very successful and gave a low yield of diastereomers of the aminyl radical expected pyrrolizidine 10 (7%) with a diastereomeric ratio of 3:1. We propose that the low yield of 5-exo, 5-exo tandem cyclisation for sulfenamide 6d is probably also due to the lower electrophilicity of the dialkyl aminyl intermediate 7d. In the tandem cyclisation of 'ordinary' aminyl radicals the reversibility of aminyl radical cyclisation is overcome by trapping the monocyclised intermediate radical by the second cyclisation to give exclusive bicyclised products. The comparison suggests that the reversibility of cyclisation of the α -ester aminyl radical 7d is less favourable than for 'ordinary' aminyl radicals. Use of (TMS) 3SiH for the tandem cyclisation gave similar results. Our initial studies have shown that the α -ester in alkenyl α -amino esters imparts sufficient electrophilicity to facilitate reasonable yields of cyclisation and provides further evidence that the polarity of intermediate aminyl radicals in cyclisation reactions is crucial. The induction of stereoselectivity in the cyclisations by the α -chiral centre of the α -amino acids is encouraging and further studies are required. ## Acknowledgements We thank Roche Discovery Welwyn and the EPSRC for a CASE Postgraduate Research Studentship (K.A.L.), the EPSRC for a research associate (D.R.C.) and for a 400 MHz NMR machine, and the EPSRC Mass Spectrometry Unit, Swansea University, Wales for mass spectra. ## References and Notes - 1. Newcomb, M.; Esker, J.L. Advances in Heterocyclic Chemistry, 1993, 28, 1031-45. - Bowman, W.R.; Clark, D.N.; Marmon, R.J., Tetrahedron Lett. 1991, 32, 6441-6444 and 1992, 33, 4993-4994; ibid., Tetrahedron, 1994, 50, 1275-1294 and 1295-1310. - 3. Maxwell, B.J.; Tsanaktsidis, J. J. Am. Chem. Soc., 1996, 118, 4276-4283 and references therein. - 4. Esker, J.L.; Newcomb, M. Tetrahedron Lett. 1993, 34, 6877-6880. - Bowman, W.R.; Stephenson, P.T.; Terrett, N.K.; Young, A.R. Tetrahedron Lett. 1994, 35, 6369-6372 and Tetrahedron, 1995, 51, 7959-7980; Bowman, W.R.; Stephenson, P.T.; Young, A.R. Tetrahedron Lett. 1995, 36, 5623-5626 and Tetrahedron, 1996, 52, 11445-11462. - 6. Newcomb, M.; Horner, J.H.; Shahin, H. Tetrahedron Lett. 1993, 34, 5523-5526. - 7. Ha, C.; Musa, O.M.; Martinez, F.N.; Newcomb, M. J. Org. Chem. 1997, 62, 2704-2710. - Horner, J.H.; Martinez, F.N.; Musa, O.M.; Newcomb, M.; Shahin, H. J. Am. Chem. Soc., 1995, 117, 11124-11133; Wagner, B.D.; Ruel, G.; Lusztyk, J. J. Am. Chem. Soc., 1996, 118, 13-19. - Esker, J.L.; Newcomb, M. Tetrahedron Lett. 1992, 33, 5913-5916 and J. Org. Chem. 1993, 58, 4933-4940 - Smadja, W. Synlett., 1994, 1-26; Porter, N.A.; Giese, B.; Curran, D.P. Acc. Chem. Res., 1991, 24, 296-304; Giese, B. Org. Reactions, 1996, 48, 301-556. - 11. Aldabbagh, F.; Bowman, W.R. Contemp. Org. Synth., 1997, in print; Kappe, Th.; Kappe, C.O. in Progress in Heterocyclic Chemistry, eds., H. Suschitzky and G. Gribble, Elsevier Science, New York, 1996, vol. 8. - 12. Duthaler, R.O. Tetrahedron, 1994, 50, 1539; Williams, R.M. Synthesis of Optically Active Amino Acids, Pergamon Press, Oxford, 1989; Reetz, M.T. Angew. Chem., Int. Ed. Engl., 1991, 30, 1531. - Adlington, R.M.; Baldwin, J.E.; Basak, A.; Kozyrod, R.P. J. Chem. Soc., Chem. Commun., 1993, 944; Baldwin, J.E.; Fieldhouse, R.; Russell, A.T. Tetrahedron Lett., 1993, 34, 5491; Barton, D.H.R.; Gero, S.D.; Quichlet-Sire, B.; Samadi, M. J. Chem. Soc., Perkin Trans. 1, 1991, 981; Beckwith, A.L.J.; Chem. Soc. Rev., 1993, 143; Beckwith, A.L.J.; Chai, C.L.L. J. Chem. Soc., Chem. Commun., 1990, 1087. - 14. Easton, C.J. in Adv. in Detailed Reaction Mechanisms, Jai Press, London, 1991, 83; ibid., Chem. Rev., 1997, 97, 53-82. - 15. A solution of Bu₃SnH (1.33 equiv.) and AMBN (0.33 equiv.) in toluene were added to a solution of the precursor in refluxing toluene using a syringe pump under an atmosphere of nitrogen over 6 h (4 cm³/h). Products were separated from tin residues by extraction into dil. hydrochloric acid. Products were characterised by IR, ¹H and ¹³C NMR, and mass spectra, and combustion analysis or accurate mass. - 16. Chatgilialoglu, C.; Ballestri, M. Organometallics, 1995, 14, 5017-5018.